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Abstract:

The need to transfer information across a range of space–time scales (i.e. scaling) is coupled with the need to predict
variables and processes of interest across landscapes (i.e. distributed simulation). Agricultural landscapes offer a unique
set of problems and space–time data availability with the onset of satellite-based positioning and crop yield monitoring.
The present study addresses quantification of the spatial variability of rainfed crop yield and near-surface soil water at
farm field scales using two general methods: (1) geostatistical and fractal analyses; and (2) univariate linear regression
using topographic attributes as explanatory variables. These methods are applied to 2 years of crop yield data from
three fields in eastern Colorado, USA, and to soil-water content (depth-averaged over the top 30 cm) in one of these
fields. Method 1 is useful for scaling each variable, and variogram shapes and their associated fractal dimensions
of crop yield are related to those of topographic attributes. A new measure of fractal anisotropy is introduced and
estimated from field data. Method 2 takes advantage of empirical and process knowledge of topographic controls on
water movement and microenvironments. Topographic attributes, estimated from a digital elevation model at some
scale (10 m by 10 m spacing here), help explain the spatial variability in crop yield. The topographic wetness index,
for example, explained from 38 to 48% of the spatial variance in 1997 wheat yield. Soil water displays more random
spatial variability, and its dynamic nature makes it difficult to predict in both space and time. Despite such variability,
spatial structure is evident and can be approximated by simple fractals out to lag distances of about 450 m. In summary,
these data and spatial analyses provide a basis and motivation for estimating the fractal behaviour, spatial statistics,
and distributed patterns of crop yield from landscape topographic information. Published in 2004 by John Wiley &
Sons, Ltd.
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INTRODUCTION

Problems associated with space–time variability and scaling across watersheds and landscape areas are
ubiquitous. Understanding of scaling behaviour and space–time interactions is critical for addressing
differential site-specific management of areas within fields (i.e. ‘precision agriculture’ with variable-rate inputs)
and regionalization across fields. Quantifying observed space–time interactions is important for sustainable
land management in terms of both agronomic production and environmental protection. Agricultural landscapes
and practices offer some unique opportunities to collect, analyse and simulate spatial data within and among
fields, particularly with the availability of satellite-based positioning and spatial crop yield monitoring.

Variability in crop yield stems from nonlinear spatial interactions between numerous factors, including
topographic relief, precipitation, soil hydraulic properties, nutrients and organic matter. Such factors cause
variability at nested scales that may give rise to a self-similar pattern of variation described by fractal geometry
(Mandelbrot, 1977; Burrough, 1983). Such fractal behaviour can be quantified using simple parameters (e.g.
fractal dimension), which are useful for characterizing data such as crop yield and for quantifying scaling
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relationships with landscape variables. Plant-available soil water is also the primary limiting factor for crop
growth and yield in semi-arid landscapes, so we address the space–time behaviour of near-surface (top 30 cm)
soil water in this context.

In this study, we will show that landscape topography reveals spatial patterns visually similar to crop yield.
We then use variogram and fractal analyses to explore the spatial characteristics of topographic attributes
estimated from elevation data in a 10 m digital elevation model (DEM). The overall spatial statistics and
fractal dimensions, including their anisotropy, are compared to show relationships between more readily
available topographic data and crop yield or soil water. This is followed by direct correlations between spatial
variables to predict spatial patterns of crop yield from topographic attributes and to explain part of the total
variance. The portion of spatial variance explained can be important for future applications of classifying land
areas for differential management.

Previous hydrological studies

Spatial scaling of variables such as surface soil moisture has been an important topic in the hydrological
literature (e.g. Blöschl and Sivapalan, 1995; Sposito, 1995; Blöschl et al., 1997). The growing field of
ecohydrology also highlights interest in understanding and quantifying soil–water–plant process interactions,
including the role of landscape variability in patterns of ecohydrological variables. Yet, high-resolution spatial
measurement of plant variables in the field, other than crop yield, is uncommon.

In the context of runoff generation, Woods and Sivapalan (1997) investigated spatial distributions of the
topographic wetness index (defined and used below), found a power-law form of its cumulative distribution
for each catchment, and related the exponents to the degree of spatial organization within a catchment. Soil
moisture organization within a pasture �10Ð5 ha� has also been related to topographic attributes (Western
and Grayson, 1998; Western et al., 1999). Western et al. (1999) identified the strongest univariate correlation
with log-transformed contributing area under wet conditions in a shallow soil with lateral saturated flow
convergence. Blöschl (1999) addressed the inference of patterns from variogram analyses within a broader
context of scaling issues in snow hydrology. Likewise for soil moisture, Western and Blöschl (1999) addressed
biases in estimated correlation length and variance due to the measurement scale (support, spacing and extent).
Furthermore, they affirmed the applicability of geostatistical techniques for predicting such bias in the presence
of spatial organization, including connectivity.

Others have scaled soil moisture independently using field measurements and remotely sensed data
(Rodriguez-Iturbe et al., 1995; Hu et al., 1997, 1998; Pelletier et al., 1997; Cosh and Brutsaert, 1999; Oldak
et al., 2002), and simulations of such data (Wood, 1995; Peters-Lidard et al., 2001). Cosh and Brutsaert (1999)
analysed the Washita ‘92 experimental data using variograms. They concluded that soil moisture in the region
�18 ð 25 km2� was nonstationary with fractal behaviour, but could be considered stationary for distances below
5 km. That is, some of the nested scales were relatively discrete rather than continuous. Recently, Bindlish and
Barros (2002) applied fractal scaling to L-band ESTAR data and were able to downscale from 200 m to 40 m,
which is similar to the scales of the present study. Peters-Liddard et al. (2001) also used remotely sensed data
and modelled soil moisture to demonstrate (multi)fractal behaviour in space with distinct dry-down regimes
in time, indicating a transition from simple scaling to multiscaling. At a larger scale, Rodriguez-Iturbe et al.
(1998) and D’Odorico and Rodriguez-Iturbe (2000) also found self-organization and space–time scaling in
simulated hydrologic states (including soil moisture) that agreed with available field observations. Overall,
simple scaling and multiscaling are common features of these studies; the approach remains empirical; and the
results are site specific. Further investigation of the scaling behaviours and interrelationships between water,
plant, and topographic variables is needed to help quantify and address observed space–time variability.

Site description

The three fields used in this study are part of the Lindstrom farm located in eastern Colorado, USA �40Ð37 °N,
103Ð13 °W�. The climate is semi-arid with an average pan evaporation of approximately 1600 mm per growing
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season, whereas the average annual precipitation (1961–90) is only 440 mm (Peterson et al., 2000). The
terrain is generally undulating with aeolian deposits of silt- and sand-sized material mantling sedimentary rock
(primarily sandstone) and fluvial deposits of the South Platte River basin. The unconsolidated sediment and
soils in our study fields are relatively thick (at least 3 m) with little or no surface expressions of groundwater
or perched water in the root zone. Thin calcareous horizons have been sampled at depths of 20–50 cm, but
soil horizons are not very pronounced otherwise. The relief is greatest in the ‘North’ field (21Ð3 m over 63 ha),
where the elevation ranges from approximately 1361 to 1382 m, with slopes exceeding 14%. The ‘South’
field (72 ha) and ‘West’ field (36 ha) have total relief values of 10Ð9 m and 8Ð5 m, respectively.

METHODS

Although the findings here are directly applicable only to dryland cropping at this location, the same concepts
and methods should apply to other semi-arid climates. It is worth noting that the soils and climate are not
ideal for application of static indices, such as the steady-state ‘wetness index’ used below. However, such
topographic attributes may be useful for quantifying a portion of the observed variability in soil water and
crop yield. The methods below are divided into measurements of different individual landscape variables,
then into methods of spatial statistical/fractal analyses and univariate regression.

Measurements

Crop yield monitoring on the Lindstrom Farm began in 1997, and more concerted efforts to measure
the soils, soil-water content and topography began in 1999. The work presented here focuses on spatial
measurement of elevation, near-surface (30 cm deep) water content, and crop yield.

Elevation. Elevation data were collected using dual-frequency, real-time kinematic global positioning
system (GPS) receiver mounted on an all-terrain vehicle. Raw elevation data of approximately 5 m resolution
(horizontal measurement spacing) for the North field and 10 m resolution on the South and West fields were
interpolated using kriging onto a 10 m ð 10 m grid DEM. The experimental variogram out to a separation
distance of 30 m was fit to a Gaussian model. Cross-validation of this interpolation method resulted in root-
mean-squared errors of 0Ð036 m, 0Ð054 m, and 0Ð038 m on the North, South, and West fields respectively.

Crop yield. We collected spatial yield data for winter wheat on all three fields in 1997, and wheat on
two fields and foxtail millet on one field in 1999. Winter wheat was harvested using a 9 m wide combine
header and measured with a yield monitor (MicroTrak Systems Inc.) linked to a GPS receiver with satel-
lite (OmniStar) differential correction. Each data point is an instantaneous value of grain flow across the
auger-mounted sensor, which is converted and calibrated to a mass per unit area (Mg ha�1 or bushels/acre).
The data ‘points’ have a small, unknown support scale associated with averaging grain flow from across the
header and in the direction of travel. Several investigators have identified a time lag and tested the accuracy
of spatial grain yield measurements (e.g. Arslan and Colvin, 1999; Beal and Tian, 2001), and modern yield
monitors have a default time-lag correction (e.g. 12 s). The sampling interval is typically 3 s, so measurement
spacing in the direction of travel varies with the combine ground speed. Values from irregular yield data were
interpolated using kriging onto the uniform 10 m DEM grid.

Foxtail millet (hay) was baled in the North field in 1999. A sample of the hay bales was measured for
volume, water content and weight to determine the dry weight per bale. Bale locations were located with a
satellite-differential GPS receiver to determine the harvest area. Details of the yield mapping methods have
been reported previously (Erskine et al., 2001). These geo-referenced bale data have large support scales,
unlike grain yield data.

Surface soil moisture. Spatial soil moisture was measured only on the North field. Soil water contents
were measured using time domain reflectometry (TDR) with 30 cm rods in the spatial pattern shown in
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Figure 1. TDR measurement locations (symbols) on a map of North field elevation

Figure 1 for each sampling period (one or two days each). The TDR probes were inserted using a hydraulic
coring device (Giddings Machine Co.) mounted on a six-wheel ATV (John Deere Gator) similar to that of
Western and Grayson (1998). A satellite differential GPS receiver (Pathfinder Pro XRS by Trimble) was
used for navigation to sample points, and data logging was integrated with the TraseBE TDR instrument
(Soil Moisture, Inc.), making rapid measurement possible. Values of water content were computed from a
universal calibration curve for all data reported here.

Data analyses

Our focus in this paper is on analyses of the spatial attributes and relationships between landscape
topography, crop yield and soil moisture. Limited space–time analyses are possible using two harvest years
over three fields. However, we explore regional (spatial) and temporal similarity between crop years, as well
as space–time variability within a field for soil moisture at discrete sample dates. First-order topographic
relationships with crop yield and soil moisture are also highlighted.

Computing topographic attributes. Topographic attributes can be computed using a DEM and geographical
information system (GIS) software. Estimates of local slope S and specific contributing area ˛, defined as
the upslope contributing area per unit contour length, were computed using TARDEM (Tarboton, 2000)
implementing the D1 method for flow direction (Tarboton, 1997), with and without sink filling. The specific
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contributing area values were log-transformed, as per Western et al. (1999), to remove the extreme skewness
in the frequency distribution. The topographic wetness index WI is defined as

WI D ln
(

˛f

S

)
�1�

where the subscript on ˛f denotes sink filling. The aspect and plan and profile curvatures were computed
using TAPES-G (Gallant and Wilson, 1996). The total curvature was computed using a central finite difference
(Gerald, 1980: 206).

Experimental variograms. Analyses of experimental variograms and model fits were performed using power-
law variograms without any nugget (i.e. the variance at zero lag equals zero) for all data types (elevation,
crop yield, and soil water content) to facilitate consistent fractal analyses. In most cases, the experimental
variograms could be fit relatively well with a two-parameter, power-law variogram model:

��h� D ahb �2�

In the case of elevation, however, Gaussian variograms fit the data better. To test for anisotropy, the procedure
was repeated with directional variograms for angles of 10, 55, 100 and 145° east of north (see TDR sample
patterns in Figure 1).

Fractal analysis. There are numerous methods to test whether spatial variability follows a fractal behaviour
(e.g. Barton and LaPointe, 1995). In this study, we used the approach of Burrough (1981, 1983). Briefly, the
characteristics of fractional Brownian motion are that sequential increments �Y�x C h� � Y�x�� must have a
Gaussian distribution with zero mean and variance �2, and have a variogram that can be adequately described
by

2��h� D E[Y�x C h� � Y�x�]2 D �2h2H �3�

where Y�x C h� and Y�x� are values of yield (or other variables) at locations x C h and x, E is the expectation
operator, and H is a scaling parameter known as the Hurst exponent (Karner, 2001; Koutsoyiannis, 2002).
It follows that a power-law fit of the semivariogram versus lag h indicates fractional Brownian motion. For
measurements along a transect, the fractal dimension is

D D 2 � H �4�

where 2H is the exponent b of the power-law model (Equation (2)).
By this definition, and to be consistent with Burrough (1981, 1983), the fractal dimension can range from

1 to 2, because variability is measured between points at given spatial lags along each radial direction. When
D D 1Ð5, for example, H is 0Ð5 and the variogram is linear �� D ah�. Values of H > 0Ð5 (i.e. D < 1Ð5)
represent increased spatial ‘persistence’ or smooth features with dominantly large-scale variations filling less
of the two-dimensional space. Conversely, values of H < 0Ð5 (i.e. D > 1Ð5) represent anti-persistence. Values
of D approaching 2Ð00, here, indicate spatial randomness or ‘noise’ filling a two-dimensional space. Interpreted
another way, the reader may view the measured variability as occurring on a surface, instead of along a line,
and add 1 to the D values computed here. However, fractal dimensions from directional variograms do not
span a three-dimensional space.

Given the above equivalence between a log–log linear variogram and a fractal dimension, we note that
there must be an equivalent anisotropy in the spatial correlation or persistence. To quantify this anisotropy,
we propose the following:

Fractal anisotropy

=

p
10bmin/

p
10bmax D

p
10�bmin�bmax� D

p
102D D 10D �5�
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where D D Dmax � Dmin, and bmin and bmax are the minimum and maximum values respectively of the
exponent b (Equation (2)) in the principal directions. Noting that the fractal dimension is independent of the
variogram units or scale (i.e. a), we assume a fixed value of a, such that√

�max�h�

�min�h�

∣∣∣∣∣
a

D hD D 10D log h �6�

where the left-hand side is the square-root of the ratio of semi-variances in the principal directions for a given
value of a. Thus, our measure of fractal anisotropy (Equation (5)) has some physical significance as a ratio of
the standard deviation between measurements in orthogonal directions at a given lag distance (i.e. h D 10). It
is also a practical quantity equal to 1Ð0 for isotropic conditions and increasing with the degree of anisotropy
to a theoretical maximum of 10. As shown below, the fractal anisotropy does not exceed 4Ð0 in the cases
studied here, and is commonly less than 2.

Univariate regression. Wheat yield for 1997 was regressed on topographic attributes computed from DEMs
of all three fields with 20% of the extreme values trimmed to help remove bias in the correlation and provide
a robust estimate (Rousseeuw, 1984; Mayo and Gray, 1997; Insightful, 2001: 155; Giloni and Padberg, 2002).
Additional data trimming (up to 40%) caused reduced values of r, which are not reported. Univariate linear
correlations were also computed for soil moisture on the North field for 1999–2000.

We then explored the following exponential model as an alternative to the linear model for yield:

Y ¾ e�5XŁ
�7�

where Y is crop yield and XŁ D �X � Xmin�/�Xmax � Xmin�, where X is one of the six topographic attributes.
The multiplier of 5 provides a range of [0Ð0067, 1Ð0] for the transformed explanatory variable.

The regression analyses presented here ignore the effects of spatial covariance between dependent and
explanatory variables. We also do not address or take advantage of spatial averaging of measurements over
areas above the measurement scale. For example, one may wish to predict crop yield averaged over 1 ha
areas from an average of one topographic attribute (or more, in the case of multivariate regression) over the
same areas. These issues are left for topics of future investigation.

RESULTS AND DISCUSSION

The results are organized and discussed in the following manner. First, we present some of the basic spatial
data, including grain yield in 1997 and soil-water TDR measurements in 1999. Experimental variograms and
model fits are then presented for each spatial variable independently. Changes in the spatial auto-correlation
with time are noted where applicable. The power-law variograms are then used to estimate fractal dimensions
and anisotropy values for each variable. Fractal properties are compared between yield in 1997 and 1999,
soil water at different dates, and six topographic attributes. We explore estimating fractal dimensions and
variogram parameters of yield from given topographic attributes. Finally, point-to-point spatial regressions are
performed between yield and each topographic attribute, and between soil water by date and each topographic
attribute.

Space–time data

Figure 2 is presented as motivation for exploring spatial relationships between crop grain yield, which may
be a surrogate for temporally averaged soil water in the root zone, and static attributes of the landscape
topography. The top row of Figure 2 shows 1997 winter wheat yield overlaid on the field topography
(elevation), followed by the bottom row of the topographic wetness index WI overlaid on the same topography
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Figure 2. Winter wheat grain yield for 1997 (a–c) and topographic wetness index (d–f) overlaid on the topography of three fields: North
(a, d), South (b, e), and West (c, f). Topographic relief is exaggerated 10 times for all images

for each of the three fields. On the North field (Figure 2a and d), one can readily (visually) follow drainage
lines on the WI map up small subcatchments and see corresponding patterns on the yield map. Upon careful
inspection, such features are seen across all three fields, including the West field (Figure 2c and f) with
the least topographic relief. These empirical relationships occur despite violating the theoretical steady flow
assumption used to derive WI. Although WI is computed from present-day elevation alone, it may reflect
both long-term soil deposition patterns and shorter-term water accumulation associated with infrequent runoff
events and lateral unsaturated flow (despite having deep soils with no obvious impeding layers). The crop at
each location also reflects some temporal average of high-frequency variations in soil water.

The soil-water data collected in 1999 are summarized by the histograms in Figure 3. During the early
growth stages in late June (Figure 3a), the crop had not yet used much stored water, and the distribution was
skewed to the left. Just 2 weeks later, in mid-July (Figure 3b), the distribution was more symmetrical, but
late-July rainfall increased soil water in early August (Figure 3c). Finally, after harvest and very little rain
(Figure 3d), the soils were dry, and the distribution skewed to the right.

Winter wheat is planted in furrows divided by small ‘ridges’ without plants. Furrow-to-furrow spacing is
approximately 30 cm. Figure 4 shows that the sample micro-location does not cause a large bias. The furrows
tend to be slightly wetter than ridges (Figure 4a and d), but this small bias was reversed on one sampling
date (Figure 4b) and practically non-existent on the next (Figure 4c). Thus, we neglect this relatively minor
source of small-scale variability in the analyses below.
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Figure 3. Frequency histograms of measured water content (30 cm TDR) for four sample dates and moisture states
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Figure 4. Furrow effects on TDR-measured water contents (top 30 cm) showing furrow versus ridge water contents (symbols) around 1 : 1
lines for four sample dates in 1999. Units of water content are percent volumetric �100 ð m3 m�3�

Experimental variogram analysis

The spatial statistical structures of elevation, crop yield and TDR data are analysed using experimental
variograms and model fits. In Figure 5, the experimental variograms (Figure 5b–e) include data pairs in a
45° view. The Gaussian variogram model fits the experimental variograms of elevation best over the full

Published in 2004 by John Wiley & Sons, Ltd. Hydrol. Process. 18, 1447–1465 (2004)



LANDSCAPE SCALING OF CROP YIELD AND SOIL WATER 1455

500

1

10 50 100
Lag  Distance (m)

0.5

5

10

S
em

i-V
ar

ia
nc

e 
(m

2 )

(log-log scale)

(f) Model Variograms

Omni
10
55
100
145

0 100 200 300 400

Lag  Distance (m)

0

5

10

15

20

S
em

i-V
ar

ia
nc

e 
(m

2 )
a = 0.204
b = 0.810

(b) 10 degrees

0 100 200 300 400

Lag  Distance (m)

0

5

10

15

20

S
em

i-V
ar

ia
nc

e 
(m

2 )

a = 0.287
b = 0.747

(c) 55 degrees

0 100 200 300 400

Lag  Distance (m)

0

5

10

15

20

S
em

i-V
ar

ia
nc

e 
(m

2 )

a = 0.047
b = 0.971

(d) 100 degrees

0 100 200 300 400

Lag  Distance (m)

0

5

10

15

20

S
em

i-V
ar

ia
nc

e 
(m

2 )

a = 0.002
b = 1.606

(e) 145 degrees

0 100 200 300 400
Lag  Distance (m)

0

5

10

15

20

S
em

i-V
ar

ia
nc

e 
(m

2 )

a = 0.041
b = 1.053

(a) Omni-Directional

Data
Gauss
Power

Figure 5. North field elevation experimental variograms and model fits using power-law (for fractal analysis below) and Gaussian models
for omnidirectional (a) and directional cases (b)–(e). Parameter values of the power-law fits are shown as a and b

range due to an apparent sill (Figure 5a and d) or periodic behaviour (Figure 5b and c). Power-law model
fits are compared with each other on a log–log plot (Figure 5f), where ‘Omni’ is the omnidirectional case
for all data compared with 10, 55, 100 and 145° east of true north. There is significant anisotropy due to the
prevailing summit and swale directions, typically toward the southeast. Some of this effect could be removed
with universal kriging, but not using a simple linear trend. Furthermore, nonstationary behaviour is expected
for this domain size, and it is reflected in the power-law variogram model. The multiplier a and exponent b
of the power-law model are shown in each variogram plot.

Despite such sill and periodic behaviour for elevation on the North field in two or three directions,
variograms of slope on the same field (Figure 6) display nested scales of variance with no apparent sill
in all directions. These plots and model fits are typical of the results for the South and West fields as well.

Variograms for the North field winter wheat in 1997 are shown in Figure 7. The power-law model fits
the omnidirectional data (a) well, with its monotonic structure and small nugget. The directional variograms
(Figure 7b–e) display anisotropy in the spatial correlation structure with principal directions likely falling in
the ranges 10–55° and 100–145°. The omnidirectional fit (neglecting anisotropy) falls nicely between these
two extremes, as seen in Figure 7e. Foxtail millet data for 1999 also display spatial structure that is fit well
by the power-law model in Figure 8. The omnidirectional fit to all data is very good, and gives parameters
very similar to those for the 100° direction. In fact, the bearing of the baler path was approximately 145°,
which may contribute to the observed anisotropy.

Variograms of TDR data also displayed anisotropy, but Figure 9 shows only the omnidirectional variograms
for each sample date in 1999. The power-law model fits all but the June 24 sample (Figure 9a) relatively well,
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Figure 6. North field slope experimental variograms and power-law model fits for omnidirectional (a) and directional cases (b)–(e). Parameter
values of the power-law fits are shown as a and b. Units of semi-variance are �m m�1�2 or dimensionless

with the longest correlation lengths and best fits when it was relatively wet (Figure 9b and d). Figure 9f shows
variability in both the slope and magnitude of the log-variograms. Yet, it is interesting to note the similarity
in slopes (b D 0Ð135 and 0Ð137) between a relatively wet date (4 August) and a dry date (24 September).
Finally, there is marked spatial auto-correlation over a broad range of length scales in the experimental
variograms for all dates, with the possible exception of 15 July (Figure 9c), where the moisture regime was
oscillating between wet and dry conditions due to plant water uptake and summer rains. Such conditions may
tend to disrupt any spatial organization that develops over longer time scales. The power-law model may be
questionable in this case, but it is used for comparison with other dates, and to compute a fractal measure of
the spatial variability.

Fractal properties

Values of the fractal dimension D are given in Table I for crop yield (1997 and 1999) and topographic
attributes over all three fields. Table I shows the power-law variogram model parameters a and b for the omni-
directional (‘Omni’) fits only, but computed values of D in four directions are also given. The last column
provides a measure of the statistical/fractal anisotropy of each attribute based on the range of D values (see
Equation (5)). Although the direction of anisotropy is not always consistent, it tends to favour one direction
for each field, and the minimum value of D for each attribute is noted using italics in Table I.

The omnidirectional fractal dimensions range from 1Ð28 for elevation in the North field to 2Ð00 for
topographic curvature in the West field. The former reflects strong spatial persistence in the elevation of
this undulating terrain, i.e. smooth topographic features and large-scale variations relative to the field size,
whereas the latter reflects almost no spatial persistence in the rate of change of slopes. On the North field,
D D 1Ð86 for wheat yield in 1997, and D D 1Ð83 for millet in 1999. The reduced value of D in 1999 is likely
due to the relatively large support scale for each measured hay bale. Yield in both years displays much less
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Figure 7. North field winter wheat grain yield data (1997) showing experimental variogram fits as per Figure 6. Units of semi-variance are
�Mg ha�1�2, and the b parameter value is not affected by units of yield

spatial persistence than elevation, more persistence than curvature, and fractals values between S and either
ln(˛) or WI.

In conjunction with Table II, Figure 10 shows the variability of mean water content and D with time.
Again, we note a rapid increase in anti-persistence during July, followed by more spatial persistence later in
the season under both wetter and drier mean conditions. In the water-limiting growth conditions of our dryland
agriculture, we would seek for some relationship between a temporal mean of D for water content and the
value of D for crop yield in that year. However, crop yield �D D 1Ð86� is more spatially persistent than water
content on any given sample date. The nearest similarity between crop yield and soil water �D D 1Ð88� occurs
early in the season, during crop emergence. This is when the plant is most affected by near-surface moisture
(e.g. top 30 cm measured by TDR)—versus later in the season, when plant roots find deeper water—and
ultimate yield can be sensitive to emergence rates in dryland agriculture (McMaster et al., 2002).

Another pattern is found in the anisotropy measure for crop yield and certain topographic attributes in
Table I. The anisotropy in spatial persistence of crop yield is lowest for the South field in both years. This
is consistent with the contributing area and WI statistics, but not with elevation and its first two spatial
derivatives. The anisotropy measure is greatest, by far, for elevation in the West field, where D is the lowest
�1Ð09� at 145°, corresponding to the predominant direction of topographic features in this relatively flat field.

Finally, topographic curvature, which appears to display little spatial persistence (D D 1Ð95, 1Ð96 and 2Ð00
for the South, North and West fields respectively), contains relatively strong continuity in very narrow fea-
tures, particularly on the North field. Comparison of Figure 11 with Figure 2d reveals topographic inflections
along ridges and drainage lines. Additional features in Figure 11 reflect smooth terraces perpendicular to the
steepest slopes. The magnitude and direction of anisotropy (Table I) are consistent with these features in the
curvature map.
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Figure 8. North field foxtail millet (hay) yield data (1999) showing experimental variogram fits as per Figure 6. Units of semi-variance are
�Mg ha�1�2

Relating fractal behaviour of yield to topography

Given the analyses above, it is possible to explore relationships between the lumped spatial statistics
measured using the fractal dimension. Some trends and similarities between values of D for different variables
were identified above. Here, we explore the potential for estimating fractals and generalized variograms of
yield from those of topography.

Table III shows selected ratios of spatial statistical parameters for all three fields. The second column
in Table III uses limited temporal data (2 years) to indicate a degree of temporal stability in yield spatial
autocorrelation between 1997 and 1999. The fractal dimensions for yield did not vary much in time for the
South and West fields, where the wheat–fallow rotation continued. The ratio was lower for the North field
�0Ð98�, where different crops were planted in the years following 1997, and due to the increased support scale
of hay bale measurements.

The omnidirectional D values for WI were similar to those for 1997 yield in all three fields, with an average
ratio of 1Ð016. Thus, WI may be a useful topographic attribute for estimating typical fractal behaviour of
wheat grain yield in fields, at least within this region.

Scaling of variograms may also be possible, but the ratios of b values between WI and yield are more
variable and not near unity. This is largely due to the mathematics of the ratios of differences. For example,
if we have two D values of 1Ð998 and 1Ð999, their ratio is 0Ð9995, but the ratio of corresponding b values
(from Equations (3) and (4)) is 0Ð004/0Ð002 D 2. However, the shapes of the variograms are similar. The next
question is: Can one estimate the magnitude or scale of semi-variance given the variogram shape associated
with D? The ratios of a values in Table III are all near 3, which provides motivation to investigate further
the concept of estimating the full variograms along with the fractal behaviour measured by D.
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Figure 9. Soil water content for five sample dates (a)–(e), and a composite of all five dates on a log–log plot (f). Units of semi-variance
are �100 m3 m�3�2

Mapping crop yield and soil water content from topographic attributes

Recalling the patterns in Figure 2, we expect spatial crop yield to be correlated with one or more topographic
attributes. In this paper, we explore univariate point-to-point correlations by joining dense, but irregularly
spaced, yield data to the nearest 10 m DEM grid points. Figure 12 shows the resulting scatter plots of pairs
of North field 1997 wheat yield versus each topographic attribute. There is quite a bit of noise in each of
these relationships, but there is also apparent correlation. The scatter plots also indicate some nonlinearity,
for which exponential transformations (Equation (7)) are used.

Thus, yield is regressed on each topographic attribute independently, and linear analyses are performed
for soil-water content. Table IV gives detailed results from regressions between the 1997 crop yield and
topographic attributes. Results of linear regression (rows in bold) are compared with nonlinear regression
(non-bold rows). Spatial means and standard deviations of the regressed variables are also reported. The
coefficient of variation for wheat yield in the North field is 0Ð57, compared with 0Ð37 and 0Ð35 for the South
and West fields respectively.

Greater variability in the North field may provide opportunity for improved, site-specific management (i.e.
‘precision agriculture’) by using topographic classification to delineate land management units with different
input rates. In any case, topographic relief, slope and curvature provide more explanatory power (individually)
in the North field than with the other two fields. However, the correlation with contributing area (with and
without sink filling) is greater on the other fields. The direction of correlation (positive or negative) is
consistent for each topographic attribute across all three fields. Yield is negatively correlated with Z and S,
and is positively correlated with the other topographic attributes. The exponential transformation of variables
(Equation (7)) causes the sign of the r-values to change compared with the r-values resulting from linear
regression. Nonlinear regression was advantageous only for Z and S.
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Table I. Values of variogram parameters and fractal dimensions for crop yields and topographic attributes computed from
a 10 m DEM for each field (N D North, S D South, W D West): ‘Omni’ denotes omnidirectional variogram fits, and the
numbers 10, 55, 100, and 145 are degrees east of true north (š180°). The lowest value of D from directional variograms is
italicized for each attribute and field. The last column is a measure of fractal anisotropy. NŁ denotes a different crop (hay
millet, instead of winter wheat) on the North field in 1999. Z is elevation, S is slope, C is total curvature, ln�˛s� and ln�˛f�
are natural logarithms of specific contributing area with sinks and filled sinks respectively, and WI is the wetness index

defined as ln�˛f/S�

Attribute Field Variogram (Omni) Fractal dimension D 10D

a b Omni 10° 55° 100° 145°

1997 yield N 0Ð337 0Ð271 1Ð86 1Ð92 1Ð90 1Ð84 1Ð80 1Ð32
S 0Ð253 0Ð196 1Ð90 1Ð93 1Ð92 1Ð91 1Ð85 1Ð20
W 0Ð424 0Ð185 1Ð91 2Ð00 1Ð87 1Ð82 1Ð99 1Ð51

1999 yield NŁ 0Ð142 0Ð341 1Ð83 1Ð76 1Ð77 1Ð83 1Ð86 1Ð26
S 0Ð202 0Ð195 1Ð90 1Ð92 1Ð88 1Ð88 1Ð93 1Ð12
W 0Ð271 0Ð205 1Ð90 1Ð88 1Ð96 1Ð92 1Ð83 1Ð35

Z N 0Ð411 1Ð053 1Ð47 1Ð60 1Ð63 1Ð51 1Ð50 1Ð26
S 8Ð40 ð 10�5 1Ð447 1Ð28 1Ð42 1Ð37 1Ð18 1Ð18 1Ð74
W 2Ð22 ð 10�4 1Ð264 1Ð37 1Ð35 1Ð69 1Ð43 1Ð09 3Ð98

S N 0Ð310 0Ð571 1Ð71 1Ð77 1Ð72 1Ð69 1Ð70 1Ð20
S 0Ð171 0Ð288 1Ð86 1Ð85 2Ð00 1Ð77 1Ð80 1Ð70
W 0Ð147 0Ð304 1Ð85 1Ð85 1Ð82 1Ð86 1Ð85 1Ð10

C N 2Ð35 ð 10�6 0Ð081 1Ð96 1Ð97 2Ð00 1Ð99 1Ð90 1Ð26
S 5Ð41 ð 10�7 0Ð098 1Ð95 2Ð00 2Ð00 1Ð92 1Ð94 1Ð20
W 1Ð22 0Ð000 2Ð00 2Ð00 2Ð00 1Ð98 1Ð99 1Ð05

ln ˛s N 0Ð943 0Ð081 1Ð96 1Ð97 2Ð00 2Ð00 1Ð81 1Ð55
S 0Ð467 0Ð208 1Ð90 1Ð94 1Ð89 1Ð87 1Ð90 1Ð17
W 0Ð846 0Ð092 1Ð95 2Ð00 2Ð00 1Ð94 1Ð84 1Ð45

ln ˛f N 1Ð068 0Ð084 1Ð96 1Ð98 2Ð00 1Ð99 1Ð81 1Ð55
S 0Ð541 0Ð211 1Ð89 1Ð95 1Ð89 1Ð88 1Ð89 1Ð17
W 0Ð990 0Ð084 1Ð96 1Ð99 2Ð00 1Ð95 1Ð84 1Ð45

WI N 1Ð146 0Ð163 1Ð92 1Ð97 2Ð00 1Ð92 1Ð77 1Ð70
S 0Ð786 0Ð218 1Ð89 1Ð91 1Ð89 1Ð89 1Ð90 1Ð05
W 1Ð263 0Ð085 1Ð96 1Ð97 2Ð00 1Ð97 1Ð86 1Ð38

Table II. Values of variogram parameters and fractal dimensions for TDR soil moisture data (see caption for Table I). ‘Omni’
denotes omnidirectional results. The lowest D value for each date is italicized

Date (1999) Variogram (Omni) Fractal dimension D 10D

a b Omni 10° 55° 100° 145°

24 Jun 1Ð446 0Ð244 1Ð88 1Ð91 1Ð81 1Ð89 1Ð80 1Ð29
30 Jun 1Ð752 0Ð240 1Ð88 1Ð79 1Ð96 1Ð88 1Ð88 1Ð48
15 Jul 7Ð646 0Ð039 1Ð98 1Ð95 1Ð97 2Ð00 1Ð98 1Ð12
4 Aug 2Ð910 0Ð135 1Ð93 1Ð96 1Ð90 1Ð85 1Ð99 1Ð38
24 Sep 1Ð832 0Ð137 1Ð93 1Ð96 1Ð83 1Ð94 2Ð00 1Ð48

On the North field, S and WI have the largest and nearly equal magnitudes for linear regression, but they
have opposite signs. The sign difference is not surprising given the definition of WI. Yet, the combination
with contributing area does not improve the correlation significantly. In the case of nonlinear regression, S
explains more of the variability than WI for the North field, but not for the other two fields. Across these
three fields, either slope, ln�af� or WI provides the highest correlation with crop yield. The results are not
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Figure 11. North field topographic curvature map. Dark is concave up (negative), and light is convex up (positive)

strictly consistent, but WI is best overall, explaining from 38 to 48% of the variability using linear regression
(cf. Figure 2).

The West field is unique among these three, in that the log-transformed contributing areas have slightly
greater r-values than WI. This coincides with the lowest magnitude of r for slope.

The correlations for water content (Table V) are generally much lower than for crop yield in this semi-arid
landscape. For several dates, there is almost no correlation with topography. Spatial water content is most
closely related to the computed topographic attributes during the wettest conditions. This is illustrated in
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Table III. Ratios of variogram and fractal parameters between years (D for 1999 yield over D for 1997 yield) and between
the wetness index (WI) and 1997 yield for all three fields (N D North, S D South, W D West)

Field D(Yield99)/D(Yield97) Ratios of WI to 1997 yield parameter values

a b Domni D(10°) D(55°) D(100°) D(145°)

N 0Ð981a 3Ð401 0Ð601 1Ð029 1Ð026 1Ð053 1Ð043 0Ð983
S 1Ð000 3Ð107 1Ð112 0Ð994 0Ð990 0Ð984 0Ð990 1Ð027
W 0Ð995 2Ð979 0Ð459 1Ð026 0Ð985 1Ð070 1Ð082 0Ð935

a Foxtail millet (hay) was planted in 1999 instead of winter wheat in the North field.
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Figure 12. North field 1997 wheat grain yield versus topographic attributes from a 10 m DEM. In (d) and (e), ln�˛� is the natural logarithm
of the specific contributing area; in (f), wetness index is defined as ln�˛/S� with sinks filled, where S is the local slope

Figure 13, where r-values of three of the strongest explanatory variables for water content (Table V) are
plotted versus the mean water content for each date. The contributing area is not plotted, despite having
a relatively high r-value on 27 April 2000, because it is inconsistent and even changes sign on one date.
More data at the wet end are required to confirm the apparent increase in correlation compared with some
of the lower moisture states shown in Figure 13. We also recall from the fractal analyses (Figure 10) that
transient conditions may play a role in addition to the mean water content. Western et al. (1999) identified
similar phenomena during transition periods from dry to wet in a more humid environment within a 10 ha
pasture.
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Table IV. Results of univariate regressions of crop yield on topographic attributes (North, South and West fields in 1997).
See Table I for definitions of symbols for topographic attributes. Numbers in bold text are r values for linear correlation,

and non-bold r values are for correlation with exponentially transformed topographic variables

Field Crop yield �Mg ha�1� Correlation coefficient r

Mean SD Z S C ln�˛s� ln�˛f� WI

North 2Ð21 1Ð26 −0Ð39 −0Ð68 0Ð36 0Ð40 0Ð40 0Ð69
0Ð53 0Ð76 �0Ð29 �0Ð34 �0Ð36 �0Ð66

South 2Ð31 0Ð85 −0Ð13 −0Ð39 0Ð20 0Ð49 0Ð53 0Ð62
0Ð25 0Ð47 �0Ð19 �0Ð44 �0Ð48 �0Ð60

West 3Ð11 1Ð08 −0Ð22 −0Ð10 0Ð35 0Ð65 0Ð66 0Ð63
0Ð21 0Ð23 �0Ð33 �0Ð64 �0Ð64 �0Ð63

Table V. Results of univariate regressions of water content on topographic attributes (North field only), where Z is elevation,
S is slope, Pro C and Plan C are profile and plan curvatures, ln�˛f� is specific contributing area, and WI is the wetness

index, defined as ln�˛f/S�. Italics indicate the wettest date and highest correlations

Sample Water content (%) Correlation coefficient r

Date # Mean SD Z S Pro C Plan C ln�˛f� WI

30 Jun 1999 504 23Ð1 2Ð6 �0Ð26 �0Ð14 0Ð19 0Ð08 0Ð13 0Ð01
15 Jul 1999 526 19Ð9 3Ð1 �0Ð15 �0Ð09 0Ð00 0Ð04 0Ð00 0Ð13
4 Aug 1999 338 23Ð2 2Ð5 �0Ð06 �0Ð04 0Ð08 0Ð00 0Ð02 0Ð07
24 Sep 1999 589 13Ð3 2Ð1 �0Ð22 �0Ð17 0Ð11 0Ð06 0Ð05 0Ð22
27 Apr 2000 339 25.9 1.8 �0.32 �0.45 0.29 0.17 0.35 0.24
23 May 2000 578 20Ð9 2Ð9 �0Ð11 0Ð03 0Ð03 �0Ð03 0Ð00 0Ð02
20 Jun 2000 591 13Ð1 2Ð3 0Ð01 0Ð19 0Ð13 0Ð05 0Ð07 0Ð03
25 Jul 2000 598 14Ð3 2Ð3 �0Ð03 0Ð04 0Ð05 0Ð05 �0Ð06 0Ð04
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Figure 13. Values of the correlation coefficient r between TDR water content and three primary topographic attributes versus the spatial
mean of water content for each sampling date (see Table V)

Published in 2004 by John Wiley & Sons, Ltd. Hydrol. Process. 18, 1447–1465 (2004)



1464 T. R. GREEN AND R. H. ERSKINE

SUMMARY AND CONCLUSIONS

The measurement of spatial crop yield and soil-water content described here provides data needed for scaling
analyses and testing of spatial correlation methods. Dryland cropping systems display large space–time
variabilities that have not been explored previously using fractal analyses and detailed topographic analyses.
This paper explores the data and identifies first-order relationships using univariate regression and fractal
dimensions estimated from variograms. A new measure of fractal anisotropy was introduced and computed
as another simple measure of spatial structure.

All of the data types (topographic attributes, crop yield, and soil-water content) display spatial structure.
Experimental variograms using data in all directions out to field scales of nearly 500 m are typically
nonstationary (no sill), indicating nested scales of variability consistent with fractal behaviour. This occurs
despite the elevation showing a distinct sill and the variogram shape fit by the Gaussian model. In addition,
some directional variograms may plateau or display periodic behaviour due to landscape undulations. The
fractal dimensions computed from power-law fits to such variograms can be anisotropic. By defining the
fractal dimension D based on the variance along directional transects, D ranged from 1Ð09 for elevation (West
field at 145°) to 2Ð00 for certain topographic attributes and for soil-water content on two dates. Values of
D for crop yield in all three fields are near 1Ð90, though the North field is a bit lower (D D 1Ð86). These
values fall between those of the topographic attributes, where D values for slope are somewhat lower (1Ð71 to
1Ð86) and values for the wetness index are generally higher (1Ð89 to 1Ð96). Such fractal dimensions and their
anisotropy may also be useful test statistics for yield predictions from distributed crop simulation models.

The fractal dimension of topographic attributes derived from a DEM may be useful for estimating the fractal
dimension of spatial crop yield in given fields within a region. Here, we found that the fractal dimension of
wetness index could be used to estimate D of crop yield, and that this measure of spatial ‘persistence’ or
smoothness was consistent from one harvest year to the next, particularly under a consistent crop rotation.
Furthermore, we showed that a variogram’s scale parameter a for crop yield could be estimated from that of
WI for each field, where the ratio aWI/ayield ³ 3.

Univariate regression using topographic attributes proved useful for predicting up to half of the spatial
variability in crop yield from point to point (r2 from 0Ð38 to 0Ð48 using WI). The strongest correlations were
with WI �r D 0Ð69� and S (r D �0Ð68 for linear regression and r D 0Ð76 using an exponential transformation),
but S was not consistent across the three fields. Yield was always negatively correlated with elevation and
slope, but it was positively correlated with the others topographic attributes.

Although water content data are ‘noisy’, and this results in low r-values, there is spatial structure at the field
scale demonstrated by the experimental variograms, particularly under relatively wet conditions. Future work
will extend the present point-to-point regressions to multiple regression and nonparametric pattern matching
at the field scales of interest.
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